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This talk is a survey of two topics of recent interest in mathematical logic, namely
linear logic and cardinal characteristics of the continuum. | shall try to explain
enough about each of them to be able to point out how they are connected.
Since the underlying ideas of the two topics are quite different, | regard the
existence of a connection as surprising.

1. LINEAR Locic

What does an implication, A = B, mean? According to classical logic, A = B
is true if and only if either A is false or B is true (or both). This is regarded as
specifying the meaning of implication because, quite generally, classical logic
finds the meaning of a statement in the conditions for its being true.

According to constructive logic, as developed by Brouwer and Heyting, a
proof of A = B is a construction converting any proof of A into a proof of
B. This is regarded as specifying the meaning of implication because, quite
generally, constructive logic finds the meaning of a statement in what is required
to prove it.

Two close relatives of the Brouwer-Heyting interpretation of implication are
Kolmogorov’s interpretation in terms of problems and the Curry-Howard inter-
pretation in terms of types. Kolmogorov regarded statements as representing
problems and interpeted A = B as the problem of reducing B to A, i.e., of solv-
ing B given a solution of A. Curry and Howard pointed out a correspondence
between logical systems and type theories, where propositions correspond to
types (which can safely be regarded simply as sets for the purposes of this talk)
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and A = B is the type of functions from type A to type B. If we identify a
proposition with the type of its proofs (and identify constructions with func-
tions) then the Curry-Howard correspondence amounts to the Brouwer-Heyting
interpretation.

The Curry-Howard corespondence has been of interest recently in theoreti-
cal computer science, where one deals with data types and where A = B could
be the type of procedures with a formal variable of type A and a value of type
B.

The preceding comments about implication have analogs for other connec-
tives. For example, the conjunction A A B is defined classically as being true
whenever both A and B are true. It is defined constructively by saying that
to prove A A B one must give a proof of A and a proof of B. Under the
Curry-Howard correspondence, conjunction becomes the cartesian product of
types.

The first central idea of linear logic, introduced in the mid-80’s by Girard,
is to keep track of how often a hypothesis is used in deducing a conclusion;
equivalently (via the Curry-Howard correspondence) one keeps track of how
often an input is used in computing an output. This and related concepts
seem (to me) more intuitive in the context of “ability to perform actions”
rather than “knowledge of facts,” for knowledge is (normally) permanent and
re-usable while abilities can be limited in the sense that someone who can do A
and can do B may not necessarily be able to do both. Although it is unclear in
the context of traditional set theory what it would mean for a function to use
an argument a particular number of times, the notion is considerably clearer
for algorithmic procedures (and is useful for memory management).

The formal development of linear logic is based on a sequent calculus. In
traditional logic, I' = A, where I and A are lists of statements, means that the
conjunction of the statements in I' entails the disjunction of the statements in
A. The first step toward linear logic is to abolish the rule of contraction,

A AFA
T,AF A,

which formalized the idea that hypotheses can be re-used: One hypothesis A
is as good as two copies of it. The removal of the contraction rule results
in a system called affine logic. In it, a sequent I' - A carries the additional
information that each hypothesis is to be used at most once.

Linear logic is obtained from affine logic by also abolishing the rule of weak-
ening,

kA
VAR A,
which formalized the idea that a hypothesis can be ignored. In linear logic,
I' = A requires that each hypothesis in I' is used exactly once.

There is also a non-commutative version of linear logic, abolishing the rule
of exchange,
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T1,A,B, Ty A
T1,B,A s A.

Then I' F A requires that the hypotheses be used in the order listed.

Girard and others have developed linear logic quite extensively, especially
its proof theory, but considerably less is known about non-commutative linear
logic. From now on, I shall talk only about the commutative system.

Linear logic’s insistence that hypotheses be used just once raises a question
about the meaning of conjunction. Should one use of A and one use of B
constitute one or two uses of AA B? Girard’s answer is that there are two sorts
of conjunction, for which he introduced the notations A ® B and A&B. One
use of A ® B consists of a use of A and a use of B. One use of A&B consists
of one use of A or one use of B, whichever the user wants. (Notice here the
beginning of an interaction between the hypotheses and a “user.”) These two
conjunctions are governed by the rules of inference

T4 TFB T-A AFB
T+ ALB T,AFA®B

(These rules would be equivalent in the presence of contraction and weakening.)

The interaction alluded to above, between a user requesting information and
hypotheses supplying information, or, in more customary terminology, between
questions and answers, leads to the second central idea of linear logic, namely
linear negation, the operation that interchanges questions and answers. An
answer of type AL is a question of type A and vice versa.

There have been several attempts to model semantically this sort of interac-
tion. Iintroduced a game semantics, where propositions (or types) are modeled
by games, whose rules specify how the questioner and answerer are to interact.
This semantics was modified by Abramsky, Jagadeesan, Hyland, and Ong to
improve its correspondence with Girard’s proof theoretic system.

I shall not discuss these developments further here but instead concentrate
on a simpler semantics, a special case of de Paiva’s “Dialectica-like” semantics.
Here a proposition is represented by a triple A = (A_, A., A) where A_ is
the set of “questions of type A,” A, is the set of “answers of type A,” and
A C A_xA, isabinary relation holding between any question and its “correct”
answers.

By a morphism from A to B, I mean a pair of functions «: B_. — A_ and

B: Ay — By such that, forallbe B_ and a € Ay,
a(b)Aa = bBg(a).

In the presence of such a morphism, if you can answer questions of type A,
then you can also answer questions of type B; given a question in B_ convert
it with « into a question in A_, produce an answer in A, and convert it with
B into an answer in B, for the original question.

Linear negation is modeled by interchanging questions and answers and
interchanging correct and incorrect.
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At =(4,,A_ -A).

The connectives ® and =- are modeled by
A®B= (A% x B A, x B_,K),

where (f, g)K(a,b) iff f(b)Aa and g(a)Bb, and
A=B=(AeBY) =4, xB_,A% x B, 0),

where (a,b)C(f,g) if either not f(b)Aa or bBg(a). (In using the notation =, I
deviate from the standard notation for this linear implication. Unfortunately,
the standard notation, a dash with a little circle at the right end, is not in
standard TgX.) One pleasant consequence of these definitions is that a mor-
phism A — B is an answer (f,g) that is correct for every question (a,b) in
the sense of A = B. De Paiva showed that, with suitable interpretations for
the remaining connectives, Girard’s proof system is sound for this semantics.
In addition, as we shall see in the next section, parts of this semantics arise
naturally in a quite different context.

2. CARDINAL CHARACTERISTICS OF THE CONTINUUM

One of set theory’s earliest and most useful contributions to the rest of math-
ematics was the distinction between different infinite cardinals and especially
the distinction between countable infinity (Xg) and the cardinality of the con-
tinuum (¢ = 2%¢). This made it possible to do things in some infinite situations
(countable ones) that would be impossible for continuum-sized ones. Examples
include the Baire category theorem and the countable additivity of Lebesgue
measure. Whenever, as in these examples, 8y and ¢ behave differently, one can
ask where between these the behavior changes. Of course, if one believes the
continuum hypothesis (CH), i.e., ¢ = Ny, then this question is trivial. But it
is consistent with the usual axioms of set theory (ZFC) that there are (many)
cardinals between Ny and ¢, and then it is reasonable to consider cardinals like
the following.

— cov(B) is the minimum number of meager sets (countable unions of nowhere
dense sets) whose union is R. (The “B” stands for Baire.)

add(B) is the minimum number of meager sets in R whose union is not
meager.

— 0 is the minimum number of functions N — N needed to eventually domi-
nate every such function.

— b is the minimum number of functions N — N such that no single function
eventually dominates them all.

These and many other cardinal numbers of a similar nature are called cardinal
characteristics of the continuum, and many connections (mostly inequalities)
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are known between them; there are also many independence results saying that
different values of these characterisitics are consistent with ZFC.
For the cardinals defined above, the provable inequalities include

ngadd(B)g{ }gagz‘*o.

cov(B)

The characteristics for Baire category defined above have analogs for Lebesgue
measure; just replace “meager” with “measure zero” in the definitions and re-
place “B” with “L” in the notations. It is a surprising theorem of Bartoszynski
that add(L) < add(B). This inequality (like each of the inequalities exhibited
above) can consistently be strict and can consistently reduce to equality.

The definitions of many of the cardinal characteristics and the proofs of
many of the inequalities between them (including all those mentioned above)
fit into the following framework, apparently first used by Miller and Fremlin
and explicitly formulated by Vojtas.

For two sets A_ and Ay and a relation A C A_ x A, (as in de Paiva’s
semantics described in the preceding section), define

I(A—, A+, A)|| = min{|Z| | Z C Arand(Vax € A_)(3z € Z)zAz}.

Such “norms” include all the characteristics defined above:
Let M be the set of meager sets (or codes for meager F, sets). Then

cov(B) = ||(R,M, €)||,

add(B) = ||(M, M, 2)||.

Let <* be the eventual majorization ordering on N'V. Then
o= ||(NY NN, <),

b= [[(NY, N, 29)]I.

If there is a morphism A — B then ||A|| > ||B||. All the inequalities
mentioned above can be deduced from this general fact by constructing explicit
morphisms. Since the inequalities all become trivial when CH holds, I once
hoped that the existence of morphisms might remain non-trivial and capture,
even in the presence of CH, the essential content of the proofs of the inequalities.
Yiparaki showed that this is not the case; CH provides morphisms as well
as inequalities. But it does not provide Borel morphisms (i.e., morphisms
whose components a and 8 are Borel functions), while the usual proofs of the
inequalities do produce Borel morphisms. So at the moment, Borel morphisms
seem to capture the essence of the usual proofs of these inequalities.

There are a few known inequalities involving three cardinal characteristics.
A nice example, due to Miller, is

add(B) > min{cov(B), b}.
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(The reverse inequality follows from those displayed earlier.) The proofs of
this and similar examples can be formalized in terms of morphisms to objects
constructed by means of (the dual of) the following “sequential composition”
connective.

A;B=(A_xB* A, xB,,5),
where (z, f)S(a,b) iff vAa and f(a)Bb. This is closely related to de Paiva’s

interpretation of the ® of linear logic, but it is not commutative. In fact, the
order of sequential composition is crucial in proofs of inequalities like the one
above. It essentially corresponds to the order of arguments and constructions
in proofs of inequalities. In many cases, it also corresponds to the order in
which forcing constructions should be iterated in order to produce models with
certain special properties. In other cases recently studied by Mildenberger,
forcing cannot detect the order of steps, or even the need for several steps, but
subtler, combinatorial arguments can.
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